semana 8- PROBABILIDAD CONCEPTOS BASICOS

 PROBABLIDAD CONCEPTOS BÁSICOS



A la estadística descriptiva le concierne el resumen de datos recogidos de eventos pasados.

Ahora se presenta la segunda faceta de la estadística, a saber, el cálculo de la probabilidad de que algo ocurra en el futuro

Esta faceta de la estadística recibe el nombre de inferencia
estadística o estadística inferencial.


PROBABILIDAD BÁSICA: CONCEPTOS

"Sin duda usted se encuentra familiarizado con términos como probabilidad, azar y posibilidad ".

 

Con frecuencia se les emplea de manera indistinta. El meteorólogo anuncia que hay 70% de probabilidad de lluvia para el domingo del Súper Tazón. Con base en una encuesta de consumidores que degustaron un pepinillo recién elaborado con sabor a plátano, la probabilidad de que sea un éxito financiero si se le comercializa es de 0.03. (Esto significa que la probabilidad de que el pepinillo sabor a plátano sea aceptado por el público es muy remota.)" extraído de Douglas Lind, Robert Mason, William Marchal. Estadística para Administración y Economía. Tercera edición. Mc Graw Hill. 2001.

 En conclusión:

La probabilidad es un número que se utiliza para expresar la posibilidad de ocurrencia de un determinado evento.

 

 SP8- del TID, escuchamos de qué se trata:



A lo largo de esta SP veremos herramientas que puedan ayudar a resolver la situación problemática de la SP8


Las probabilidades son muy

útiles, ya que pueden servir

para desarrollar estrategias.


Para abordar la resolución probabilística de este problema se puede basar en tres enfoques, conocerlos nos permitirá:


1- elegir el método adecuado para tu problema específico
2- evitar errores al aplicar el enfoque inadecuado
3- integrar información previa y datos empíricos (Fundado en la experiencia - RAE) para mejorar tus estimaciones.
4- Reconocer los límites de cada enfoque y buscar alternativas. 

Los enfoques son:

  • ENFOQUE DE PROBABILIDAD CLASICA A PRIORI
  • ENFOQUE DE PROBABILIDAD CLASICA A POSTERIORI, EMPÍRICA O DE FRECUENCIAS RELATIVAS O
  • ENFOQUE DE PROBABILIDAD SUBJETIVO
  

Enfoque de probabilidad clásica a priori

Esta teoría es la más antigua y se origina en los juegos de azar. Se basa en el supuesto de que todos los resultados posibles para un experimento aleatorio (AL AZAR: actividad que se diseña e implementa de manera que sea imposible predecir con certeza un resultado)son igualmente probables.

Así, empleando el enfoque clásico, la probabilidad de ocurrencia de un evento se calcula dividiendo el número de resultados favorables, entre el número de resultados posibles.











Enfoque de probabilidad clásica empírica o de posteriori o de frecuencia relativa

Según esta teoría, el único procedimiento válido para determinar probabilidades es a partir de la información obtenida realizando repeticiones del experimento de la situación estudiada. 

No implica ningún supuesto previo de igualdad de probabilidades.

A este enfoque se le denomina también enfoque empírico debido a que para determinar los valores de probabilidad se requiere de la observación y de la recopilación de datos
También se le denomina a posteriori, ya que el resultado se obtiene después de realizar el experimento un cierto número de veces.


Este razonamiento conduce a la interpretación en términos de frecuencias relativas: si un experimento se ejecuta n veces en las mismas condiciones y hay x resultados favorables, con x≤n, una estimación de la probabilidad de ese hecho es la razón x/n.




La teoría clásica  a priori y la teoría de frecuencias relativas se llaman:


enfoques objetivos de probabilidad.
 

La teoría clásica es objetiva porque se basa en un conjunto de supuestos.
La de frecuencias relativas es objetiva porque la probabilidad de un hecho es determinada por repetidas observaciones empíricas.

Probabilidad o Teoría Subjetiva


Esta teoría se refiere a la posibilidad de ocurrencia de un hecho asignada por una persona en particular. 

Se supone que la persona que asigna dicha probabilidad se basa en su experiencia, conocimiento del
tema y, por supuesto que tendrá una influencia de su opinión personal, lo que lo hace de alguna manera subjetivo.


Observemos que, a diferencia del enfoque de frecuencias relativas, hay hechos que son imposibles de repetirse para su estudio y, por tanto, el estudio bajo ese enfoque es imposible. Suponga que se analiza cierta reacción química, nuclear, o un estallido social; situaciones que son únicas, y por tanto, no pueden repetirse bajo las mismas condiciones.

Analicemos los tres enfoques en la resolución de la SP8

EN CONCLUSIÓN:


LA DIFERENCIACIÓN ENTRE LOS ENFOQUES DE PROBABILIDAD ES IMPORTANTE PORQUE CADA UNO SE UTILIZA EN CONTEXTOS ESPECÍFICOS Y RESUELVE PROBLEMAS DIFERENTES.

LA PROBABILIDAD CLASICA A PRIORI  se utiliza  cuando:
  •  se conocen todos los resultados posibles.
  •  todos los resultados tienen la misma posibilidad de ocurrir.
  •  No hay información previa.

LA PROBABILIDAD CLASICA A POSTERIORI O EMPÍRICA  se utiliza  cuando:
  • se tienen datos históricos o experimentales.
  • se estima la probabilidad basada en frecuencias relativas.

LA PROBABILIDAD SUBJETIVA se utiliza  cuando:
  • No hay datos precisos.
  • Se basa en opiniones, creencias u juicios expertos. 


EJERCITEMOS:

En cada uno de los siguientes casos determina, justificando tu respuesta, si usarías enfoque:
clásico, de frecuencia, o subjetivo para el cálculo de las siguientes probabilidades o posibilidades de:

a. que una casa seleccionada de una página web de bienes raíces tenga cocina completa.
b. que un nuevo producto en el mercado tenga éxito
c. escoger una carta negra de un juego de cartas.
d. que al tirar un dado perfecto salga un 5.
e. que usted apruebe esta materia en el IEFI.
f. que dos de sus amigos digan que sí al proponerles compartir unas vacaciones
G. que un accidente automovilístico provoque víctimas fatales.


Respuestas 
a. que una casa seleccionada de una página web de bienes raíces tenga cocina completa. PROBABILIDAD CLASICA EMPÍRICA O A POSTERIORI
b. que un nuevo producto en el mercado tenga éxito. PROBABILIDAD SUBJETIVA
c. escoger una carta negra de un juego de cartas. PROBABILIDAD CLASICA A PRIORI
d. que al tirar un dado perfecto salga un 5.P.CLASICA A PRIORI
e. que usted apruebe esta materia en el IEFI.P.SUBJETIVA
f. que dos de sus amigos digan que sí al proponerles compartir unas vacaciones. P.SUBJETIVA
G. que un accidente automovilístico provoque víctimas fatales. P.CLASICA EMPIRICA O A POSTERIORI O DE FRECUENCIAS


TAREA 

ACTIVIDAD 1: busca un ejemplo y súbelo al muro interactivo ( has clic aquí ) con el título ejemplo de probabilidad clásica a priori.

ACTIVIDAD 2: busca un ejemplo y súbelo al muro interactivo ( has clic aquí ) con el título ejemplo de probabilidad clásica a posteriori o de frecuencias relativas

ACTIVIDAD 3: busca un ejemplo y súbelo al muro interactivo ( has clic aquí ) con el título ejemplo de probabilidad subjetiva


Conceptos Básicos de Probabilidad

Cabe aclarar que un tratamiento adecuado de la teoría de probabilidades requiere cierto nivel de conocimiento de la teoría de conjuntos, por tanto se recomienda al lector una revisión de conceptos y reglas básicas de operaciones con conjuntos.
Aquí hay un video con una explicación sencilla con algunos conceptos de esta teoría.



ACTIVIDAD 4: busca los siguientes conceptos en el TID y ejemplifica, en aquellos que se pueda, con el lanzamiento de un dado de 6 números perfectamente equilibrado.


  1. Espacio muestral
  2. Puntos muestrales
  3. Evento o hecho
  4. Evento simple
  5. Complemento de un evento
  6. Evento compuesto

Aquí tienes un dado desplegado para ver todas sus caras








Comentarios

Entradas populares de este blog

PREPARANDONOS PARA EL IEFI

SEMANA1- Probabilidad vs Estadística

SEMANA2- VALORES DE TENDENCIA CENTRAL